Partial design process
Grade Level: 4 (3 – 5) Time Required: 30 minutes Group Size: 28 Subject Areas:NGSS Performance Expectations:
Print this activity Suggest an edit
Units serve as guides to a particular content or subject area. Nested under units are lessons (in purple) and hands-on activities (in blue).
Note that not all lessons and activities will exist under a unit, and instead may exist as "standalone" curriculum.
Unit | Lesson | Activity |
Through a teacher demonstration using water, heat and food coloring, students see how convection moves the energy of the Sun from its core outwards. Students learn about the three different modes of heat transfer—convection, conduction, radiation—and how they are related to the Sun and life on our planet. Includes a student worksheet for data collection and graphing. This engineering curriculum aligns to Next Generation Science Standards (NGSS).
Engineers design measuring devices to record changes in density and temperature on the Sun. By observing the Sun we can learn about what is happening under the surface and how heat is moving through the Sun. Heat transfer also occurs on Earth and engineers need to understand the different modes in order to build devices and structures that do not overheat or get too cold.
Each TeachEngineering lesson or activity is correlated to one or more K-12 science, technology, engineering or math (STEM) educational standards.
All 100,000+ K-12 STEM standards covered in TeachEngineering are collected, maintained and packaged by the Achievement Standards Network (ASN), a project of D2L (www.achievementstandards.org).
In the ASN, standards are hierarchically structured: first by source; e.g., by state; within source by type; e.g., science or mathematics; within type by subtype, then by grade, etc.
4-PS3-2. Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. (Grade 4)
Do you agree with this alignment? Thanks for your feedback!
Alignment agreement: Thanks for your feedback!
Analyze and interpret data to make sense of phenomena using logical reasoning.
Alignment agreement: Thanks for your feedback!
Alignment agreement: Thanks for your feedback!
Energy is present whenever there are moving objects, sound, light, or heat. When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced.
Alignment agreement: Thanks for your feedback!
Light also transfers energy from place to place.
Alignment agreement: Thanks for your feedback!
Alignment agreement: Thanks for your feedback!
To share with the entire class (teacher demonstration):
Visit [ www.teachengineering.org/activities/view/cub_solar_lesson02_activity1 ] to print or download.
Familiarity with the Sun's composition, layers and importance as Earth's energy source, as provided in the Blazing Gas lesson of this Solar System unit.
Can heat move? Of course it can. Heat (energy) travels in three ways: convention, conduction and radiation. Conduction works by direct contact of two materials. This is what happens when a pot is placed on the stove. First the stove material is heated. Then the heat is transferred by conduction to the pot, which is in direct contact with the hot stove. Convection works through the interaction of fluid molecules such as air or water. Convection typically occurs when a hot fluid or gas moves upward. Radiation works through the movement of heat waves. This is similar to light and radio waves.
So, how does heat get from the Sun to Earth? Conduction and convection require a material (either solid, liquid or gas) to be present. (Emphasize: Since there is no matter in space between the Sun and Earth, all the heat from the Sun comes to us in the form of radiation.) Inside the Sun is matter and therefore other forms of heat transfer are at work. The Sun uses two methods to transport energy out from the interior. The first is radiation. Radiation begins in the Sun's core. In the Sun's radiation zone, heat from the core travels as electromagnetic waves (radiation) outwards to the Sun's convective zone. Convection currents are currents created when there are differences in temperature and density. (Emphasize: Warmer liquids and gasses are less dense and therefore float (or rise) when in cooler liquids and gasses.) ) As this warmer gas (or liquid) rises, cooler gas (or liquid) moves to take its place where it is heated. This is called a convection current. Convection currents swirl the energy until it passes through to the Sun's photosphere.
When the Sun's energy (in the form of radiation) hits our planet's atmosphere, some of it reflects off while some of it heats up the air, water and land. Once the material that makes up the Earth and its atmosphere is heated, it can move around the globe through convection and conduction. Heat loss through a wall is an example of conduction. Insulation limits conduction and keeps the heat inside your house. Cooling yourself with a fan is an example of convection. Convection is the reason it feels colder on a windy day.
Engineers must understand how heat moves so that the devices they build do not get too hot or too cold. What would happen if an engineer did not make sure there was insulation in the walls of your house? It would be very cold inside on a winter day because the heat could escape through conduction. What would happen if the cord to an appliance did not have an insulated covering on it? The wire would be exposed and the electricity running through it could hurt someone or start a fire. What would happen if an engineer wrapped an engine in insulation? The heat generated by the engine would not be able to get out and the engine would overheat.
Table 1 provides examples of convection, conduction and radiation on the Sun and on Earth. It may be helpful to draw the table on the board as a way to graphically organize and distinguish the concepts.
Before the Activity
With the Students
conduction: The transfer of heat from a region of higher temperature to a region of lower temperature by increased kinetic energy moving from molecule to molecule.
convection: Transfer of heat in a fluid (liquid or gas) when higher-temperature fluid expands and moves, creating heat transfer.
density: The compactness of matter described by a ratio of mass (or weight) per unit volume.
radiation: The transfer of heat from a region of higher temperature to a region of lower temperature by greater emission of radiant energy from the region of higher temperature.
Discussion Questions: Ask students what they know about heat movement. Can heat move? If it can, how does it move? Introduce the concepts of conduction, convection and radiation. How many things in your kitchen are designed to take advantage or protect you from the three ways of heat transfer? When do they see these kinds of heat transfer in their daily lives? Real-life examples: Sunburn is radiation from the Sun moving 93 million miles (150 million km) through space to heat your skin. The outside of a mug of hot cocoa is warm because the heat in the liquid is moving to the outside of the mug through conduction. The fact that the water on the surface of a swimming pool is warmer than the water in the deep parts is caused by convection.
Activity Embedded Assessment
Voting: Before starting the class demonstration, ask the students to vote on the following question. Tally votes on the board. Tell the students that the question will be answered during the demonstration.
Numbered Heads: Divide the class into teams of three to five students each. Have the students on each team number off so each member has a different number. Ask the students a question and give them a time frame for solving it (~one minute). The members of each team should work together to answer the question. Everyone on the team must know the answer. Call a number at random. Students with that number should raise their hands. If not all the students with that number raise their hands, give the teams a little more time. Ask the students:
Graphing: Have the students create a bar graph of temperature vs. time using the data from the Heat Transfer Worksheet.
It works best to drop the glitter and food coloring from directly above the heat source.
If the water takes a long time to heat, either lower the dish or remove some water.
Take temperature measurements at several different heights above the surface of the water so the students can see how the temperature changes as you move away from the Sun. Have them draw a picture of the experiment and color code the temperatures at different locations.
Assign student pairs different rooms of a house or school, or different venues or activities, such as stores, recreation centers, transportation, cooking or sports. Give them each 15 minutes to brainstorm a list of engineer-designed devices or products that would be found in that place or activity, in which understanding the three ways of heat transfer was important for them to work. Have the student teams report back to the entire class on their findings.
Get the inside scoop on all things TeachEngineering such as new site features, curriculum updates, video releases, and more by signing up for our newsletter!
PS: We do not share personal information or emails with anyone. Subscribe to TE NewsletterUpper Elementary Lesson
What's Hot and What's Not?With the help of simple, teacher-led demonstration activities, students learn the basic physics of heat transfer by means of conduction, convection and radiation. They also learn about examples of heating and cooling devices, from stove tops to car radiators, that they encounter in their homes, scho.
Upper Elementary Lesson
How Hot Is It?Students learn about the nature of thermal energy, temperature and how materials store thermal energy. They discuss the difference between conduction, convection and radiation of thermal energy, and complete activities in which they investigate the difference between temperature, thermal energy and .
Upper Elementary Lesson
What Is Heat?Students learn about the definition of heat as a form of energy and how it exists in everyday life. They learn about the three types of heat transfer—conduction, convection and radiation—as well as the connection between heat and insulation.
High School Lesson
Heat Transfer: No Magic About ItStudents learn the scientific concepts of temperature, heat and the transfer of heat through conduction, convection and radiation, which are illustrated by comparison to magical spells found in the Harry Potter books.
Kagen, Spencer. Cooperative Learning. San Juan Capistrano, CA: Kagan Cooperative Learning, 1994. (Source for Numbered Heads assessment)
Wilson, Jim (editor). NASA. Last updated January 12, 2007. National Aeronautics and Space Administration. Accessed January 15, 2007. http://www.nasa.gov/
The contents of this digital library curriculum were developed under grants from the Fund for the Improvement of Postsecondary Education (FIPSE), U.S. Department of Education, and National Science Foundation (GK-12 grant no 0338326). However, these contents do not necessarily represent the policies of the Department of Education or National Science Foundation, and you should not assume endorsement by the federal government.
Last modified: May 12, 2021
Free K-12 standards-aligned STEM curriculum for educators everywhere.
Find more at TeachEngineering.org
Use of the TeachEngineering digital library and this website constitutes acceptance of our Terms of Use and Privacy Policy.
*The NGSS logo is a registered trademark of WestEd.
Neither WestEd nor the lead states and partners that developed the NGSS were
involved in the production of TE, and do not endorse it.
Use of the TeachEngineering digital library and this website constitutes acceptance of our Terms of Use and Privacy Policy.
*The NGSS logo is a registered trademark of WestEd.
Neither WestEd nor the lead states and partners that developed the NGSS were
involved in the production of TE, and do not endorse it.