Urban air pollution control policies and strategies: a systematic review

A wide range of policies, strategies, and interventions have been implemented to improve air quality all over the world. This systematic review comprehensively appraises the policies and strategies on air pollutants controls enacted in different countries, worldwide. Three databases, Web of Science, PubMed and Scopus, were used for the search. After screening, a total of 114 eligible manuscripts were selected from 2219 documents for further analysis. Selected articles were divided into two categories: (1) articles focusing on introducing the policies and strategies enacted for controlling air pollution in different countries, and (2) articles which focused on different policies and strategies to control one or more specific pollutants. In the former one, urban air pollution control strategies and policies were divided into four categories, namely, general strategies and policies, transportation, energy, and industry. In case of latter category, policies and strategies focused on controlling six pollutants (PM, SO2, NO2, VOCS, O3 and photochemical smog). The results indicated that, the most common policies and strategies enacted in most countries are pertinent to the transportation sector. Changing energy sources, in particular elimination or limited use of solid fuels, was reported as an effective action by governments to reduce air pollution. Overall, most policies enacted by governments can be divided into three general categories: (a) incentive policies such as implementing a free public transportation program to use fewer private cars, (b) supportive policies such as paying subsidies to change household fuels, and (c) punitive policies such as collecting tolls for cars to enter the congestion charging areas. Depending on the circumstances, these policies are implemented alone or jointly. In addition to the acceptance of international agreements to reduce air pollution by governments, greater use of renewable energy, clean fuels, and low-pollution or no-pollution vehicles such as electric vehicles play an important role in reducing air pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Rent this article via DeepDyve

Similar content being viewed by others

How Can Urban Policies Improve Air Quality and Help Mitigate Global Climate Change: a Systematic Mapping Review

Article 23 December 2015

The costs, health and economic impact of air pollution control strategies: a systematic review

Article Open access 21 August 2024

Addressing equity in interventions to reduce air pollution in urban areas: a systematic review

Article 26 September 2014

References

  1. Paoletti E, Schaub M, Matyssek R, Wieser G, Augustaitis A, Bastrup-Birk A, et al. Advances of air pollution science: from forest decline to multiple-stress effects on forest ecosystem services. Environ Pollut. 2010;158(6):1986–9. CASGoogle Scholar
  2. LI ZD, Data E, De Dai IY. Japan-china comparative analysis on measures against sulfur dioxides pollution. IEE Japan, Report. 1999.
  3. WHO. Ambient (outdoor) air quality and health 2018. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health. Accessed 2 June 2021
  4. Neidell MJ. Air pollution, health, and socio-economic status: the effect of outdoor air quality on childhood asthma. J Health Econ. 2004;23(6):1209–36. Google Scholar
  5. Nœss Ø, Piro FN, Nafstad P, Smith GD, Leyland AH. Air pollution, social deprivation, and mortality: a multilevel cohort study. Epidemiology. 2007;18:686–94. Google Scholar
  6. Hoek G, Brunekreef B, Goldbohm S, Fischer P, van den Brandt PA. Association between mortality and indicators of traffic-related air pollution in the Netherlands: a cohort study. Lancet. 2002;360(9341):1203–9. Google Scholar
  7. Bell ML, Ebisu K. Environmental inequality in exposures to airborne particulate matter components in the United States. Environ Health Perspect. 2012;120(12):1699–704. CASGoogle Scholar
  8. Chi GC, Hajat A, Bird CE, Cullen MR, Griffin BA, Miller KA, et al. Individual and neighborhood socioeconomic status and the association between air pollution and cardiovascular disease. Environ Health Perspect. 2016;124(12):1840–7. Google Scholar
  9. Deguen S, Zmirou-Navier D. Social inequalities resulting from health risks related to ambient air quality—a European review. Eur J Public Health. 2010;20(1):27–35. Google Scholar
  10. Evans GW, Kantrowitz E. Socioeconomic status and health: the potential role of environmental risk exposure. Annu Rev Public Health. 2002;23(1):303–31. Google Scholar
  11. Afroz R, Hassan MN, Ibrahim NA. Review of air pollution and health impacts in Malaysia. Environ Res. 2003;92(2):71–7. CASGoogle Scholar
  12. Anderson HR. Air pollution and mortality: a history. Atmos Environ. 2009;43(1):142–52. CASGoogle Scholar
  13. Brunekreef B, Holgate ST. Air pollution and health. Lancet. 2002;360(9341):1233–42. CASGoogle Scholar
  14. Lv Y, Huang G, Li Y, Yang Z, Sun W. A two-stage inexact joint-probabilistic programming method for air quality management under uncertainty. J Environ Manag. 2011;92(3):813–26. CASGoogle Scholar
  15. Sokhi RS, Mao H, Srimath ST, Fan S, Kitwiroon N, Luhana L, et al. An integrated multi-model approach for air quality assessment: development and evaluation of the OSCAR air quality assessment system. Environ Model Softw. 2008;23(3):268–81. Google Scholar
  16. Sunyer J, Saez M, Murillo C, Castellsague J, Martinez F, Antó JM. Air pollution and emergency room admissions for chronic obstructive pulmonary disease: a 5-year study. Am J Epidemiol. 1993;137(7):701–5. CASGoogle Scholar
  17. Svartengren M, Strand V, Bylin G, Jarup L, Pershagen G. Short-term exposure to air pollution in a road tunnel enhances the asthmatic response to allergen. Eur Respir J. 2000;15(4):716–24. CASGoogle Scholar
  18. Anjaneyulu M, Harikrishna M, Chenchuobulu S. Modeling ambient carbon monoxide pollutant due to road traffic. World Acad Sci Eng Technol. 2006;17:103–6. Google Scholar
  19. Badami MG. Transport and urban air pollution in India. Environ Manag. 2005;36(2):195–204. Google Scholar
  20. Mashelkar R, Biswas D, Krishnan N, Mathur O, Natarajan R, Niyati K, et al. Report of the expert committee on auto fuel policy. Ministry of Petroleum and Natural Gas, Government of India, New Delhi. 2002.
  21. Molina L, Kolb C, Foy Bd, Lamb B, Brune W, Jimenez J, et al. Air quality in North America’s most populous city–overview of the MCMA-2003 campaign. Atmos Chem Phys. 2007;7(10):2447–73. CASGoogle Scholar
  22. Molina L, Molina MJ. Air quality in the Mexico Megacity: an integrated assessment. Dordrecht: Springer Science & Business Media; 2002. Google Scholar
  23. Singh A, Gupta H, Gupta K, Singh P, Gupta V, Sharma R. A comparative study of air pollution in Indian cities. Bull Environ Contam Toxicol. 2007;78(5):411–6. CASGoogle Scholar
  24. Wang H, Fu L, Zhou Y, Du X, Ge W. Trends in vehicular emissions in China’s mega cities from 1995 to 2005. Environ Pollut. 2010;158(2):394–400. CASGoogle Scholar
  25. Zhou T, Sun J, Yu H. Temporal and spatial patterns of China’s main air pollutants: years 2014 and 2015. Atmosphere. 2017;8(8):137. Google Scholar
  26. Bell ML, Davis DL, Gouveia N, Borja-Aburto VH, Cifuentes LA. The avoidable health effects of air pollution in three Latin American cities: Santiago, Sao Paulo, and Mexico City. Environ Res. 2006;100(3):431–40. CASGoogle Scholar
  27. Quraishi TA. Discussion on air pollution abatement strategies for residential solid-fuel burning appliances. Int J Environ Stud. 1988;31(1):19–37. CASGoogle Scholar
  28. Stern AC, Professor E. History of air pollution legislation in the United States. J Air Pollut Control Assoc. 1982;32(1):44–61. CASGoogle Scholar
  29. Horowitz CA. Paris agreement. Int Leg Mater. 2016;55(4):740–55. Google Scholar
  30. Rogelj J, Den Elzen M, Höhne N, Fransen T, Fekete H, Winkler H, et al. Paris agreement climate proposals need a boost to keep warming well below 2 C. Nature. 2016;534(7609):631–9. CASGoogle Scholar
  31. (EC) EC. Council directive 1999/30/EC of 22 april 1999 relating to limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter and lead in ambient air. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:31999L0030. Accessed on 24 Mar 2016.
  32. (UNECE). 1979 Convention on long-rangetransboundary air pollution. Available online: https://www.unece.org/fileadmin/DAM/env/lrtap/full%20text/1979.CLRTAP.e.pdf. Accessed on 25 Oct 2016.
  33. Hardie RW, Thayer GR, Barrera-Roldán A. Development of a methodology for evaluating air pollution options for improving the air quality in Mexico City. Sci Total Environ. 1995;169(1–3):295–301. CASGoogle Scholar
  34. Sousa Santos G, Sundvor I, Vogt M, Grythe H, Haug TW, Høiskar BA, et al. Evaluation of traffic control measures in Oslo region and its effect on current air quality policies in Norway. Transp Policy. 2020;99:251–61. Google Scholar
  35. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. Google Scholar
  36. Wu Y, Wang RJ, Zhou Y, Lin BH, Fu LX, He KB, et al. On-road vehicle emission control in Beijing: past, present, and future. Environ Sci Technol. 2011;45(1):147–53. CASGoogle Scholar
  37. Zhou Y, Fu LX, Cheng LL. Characterization of in-use light-duty gasoline vehicle emissions by remote sensing in Beijing: impact of recent control measures. J Air Waste Manag Assoc. 2007;57(9):1071–7. CASGoogle Scholar
  38. Hao JM, Wang LT, Li L, Hu JN, Yu XC. Air pollutants contribution and control strategies of energy-use related sources in Beijing. Sci China Ser D-Earth Sci. 2005;48:138–46. CASGoogle Scholar
  39. Guo SH, Chen LQ. Can urban rail transit systems alleviate air pollution? Empirical evidence from Beijing. Growth Chang. 2019;50(1):130–44. Google Scholar
  40. Yang W, Yu CY, Yuan W, Wu XY, Zhang W, Wang XJ. High-resolution vehicle emission inventory and emission control policy scenario analysis, a case in the Beijing-Tianjin-Hebei (BTH) region. China J Clean Prod. 2018;203:530–9. Google Scholar
  41. Xing J, Zhang FF, Zhou Y, Wang SX, Ding D, Jang C, et al. Least-cost control strategy optimization for air quality attainment of Beijing-Tianjin-Hebei region in China. J Environ Manag. 2019;245:95–104. CASGoogle Scholar
  42. Xie HJ, Liu MF, Jiang W. Balanced development and industrialization and urbanization serving as a strategy for pollution agglomeration control. Ekoloji. 2019;28(107):2431–41. Google Scholar
  43. Song XW, Hao YP, Zhu XD. Air pollutant emissions from vehicles and their abatement scenarios: a case study of Chengdu-Chongqing urban agglomeration, China. Sustainability. 2019;11(22):6503. CASGoogle Scholar
  44. Wei W, Li P, Wang H, Song M. Quantifying the effects of air pollution control policies: a case of Shanxi province in China. Atmos Pollut Res. 2018;9(3):429–38. CASGoogle Scholar
  45. Qiu ZW, Li XX, Hao YZ, Deng SX. Potential of diesel emissions reduction strategies in Xi’an. China Clean Technol Environ Policy. 2016;18(8):2717–24. CASGoogle Scholar
  46. Chen X, Yuan ZR. Environmentally friendly traffic control strategy—a case study in Xi’an city. J Clean Prod. 2020. https://doi.org/10.1016/j.jclepro.2019.119397. ArticleGoogle Scholar
  47. Ahlers AL, Shen YD. Breathe easy? Local nuances of authoritarian environmentalism in China’s battle against air pollution. China Q. 2018;234:299–319. Google Scholar
  48. Li W, Shao L, Wang W, Li H, Wang X, Li Y, et al. Air quality improvement in response to intensified control strategies in Beijing during 2013–2019. Sci Total Environ. 2020;744:140776. CASGoogle Scholar
  49. Cui L, Zhou J, Peng X, Ruan S, Zhang Y. Analyses of air pollution control measures and co-benefits in the heavily air-polluted Jinan city of China, 2013–2017. Sci Rep. 2020. https://doi.org/10.1038/s41598-020-62475-0. ArticleGoogle Scholar
  50. Jin Y, Andersson H, Zhang S. Air pollution control policies in China: a retrospective and prospects. Int J Environ Res Public Health. 2016;13(12):1219. Google Scholar
  51. Wang SX, Hao JM. Air quality management in China: issues, challenges, and options. J Environ Sci. 2012;24(1):2–13. CASGoogle Scholar
  52. Zhan J, Wang M, Liu Y, Feng C, Gan T, Li L, et al. Impact of the ‘13th five-year plan’ policy on air quality in Pearl River Delta, China: a case study of Haizhu district in Guangzhou city using WRF-Chem. Appl Sci. 2020;10(15):5276. CASGoogle Scholar
  53. Yang X, Teng F. The air quality co-benefit of coal control strategy in China. Resour Conserv Recycl. 2018;129:373–82. Google Scholar
  54. Jiang X, Li G, Fu W. Government environmental governance, structural adjustment and air quality: a quasi-natural experiment based on the three-year action plan to win the blue sky defense war. J Environ Manag. 2021. https://doi.org/10.1016/j.jenvman.2020.111470. ArticleGoogle Scholar
  55. Tsai WT. Current status of air toxics management and its strategies for controlling emissions in Taiwan. Toxics. 2016. https://doi.org/10.3390/toxics4020008. ArticleGoogle Scholar
  56. Shaw D, Hung MF. Evolution and evaluation of air pollution control policy in Taiwan. Environ Econ Policy Stud. 2001;4(3):141–66. Google Scholar
  57. Kuo PH, Ni PC, Keats A, Tsuang BJ, Lan YY, Lin MD, et al. Retrospective assessment of air quality management practices in Taiwan. Atmos Environ. 2009;43(25):3925–34. CASGoogle Scholar
  58. Rusco FW, Walls WD. Vehicular emissions and control policies in Hong Kong. Contemp Econ Policy. 1995;13(1):50–61. Google Scholar
  59. Cui L, Wang XL, Ho KF, Gao Y, Liu C, Ho SSH, et al. Decrease of VOC emissions from vehicular emissions’ in Hong Kong from 2003 to 2015: results from a tunnel, study. Atmos Environ. 2018;177:64–74. CASGoogle Scholar
  60. Yao DW, Lyu XP, Murray F, Morawska L, Yu W, Wang JY, et al. Continuous effectiveness of replacing catalytic converters on liquified petroleum gas-fueled vehicles in Hong Kong. Sci Total Environ. 2019;648:830–8. CASGoogle Scholar
  61. Phuntsho S, Kanitpong K. Vehicle emission control strategies and public opinion in Bhutan. Transp Res Rec. 2010;2157:103–10. Google Scholar
  62. Amann M, Purohit P, Bhanarkar AD, Bertok I, Borken-Kleefeld J, Cofala J, et al. Managing future air quality in megacities: a case study for Delhi. Atmos Environ. 2017;161:99–111. CASGoogle Scholar
  63. Dholakia HH, Purohit P, Rao S, Garg A. Impact of current policies on future air quality and health outcomes in Delhi. India Atmos Environ. 2013;75:241–8. CASGoogle Scholar
  64. Majumdar D, Purohit P, Bhanarkar AD, Rao PS, Rafaj P, Amann M, et al. Managing future air quality in megacities: emission inventory and scenario analysis for the Kolkata Metropolitan City, India. Atmos Environ. 2020. https://doi.org/10.1016/j.atmosenv.2019.117135. ArticleGoogle Scholar
  65. Peng W, Dai H, Guo H, Purohit P, Urpelainen J, Wagner F, et al. The critical role of policy enforcement in achieving health, air quality, and climate benefits from India’s clean electricity transition. Environ Sci Technol. 2020;54(19):11720–31. CASGoogle Scholar
  66. Chelani AB, Devotta S. Air quality assessment in Delhi: before and after CNG as fuel. Environ Monit Assess. 2007;125(1–3):257–63. CASGoogle Scholar
  67. Kathuria V. Vehicular pollution control in Delhi. Transp Res Part D-Transp Environ. 2002;7(5):373–87. Google Scholar
  68. Goyal P, Gulia S, Goyal SK, Kumar R. Assessment of the effectiveness of policy interventions for air quality control regions in Delhi city. Environ Sci Pollut Res. 2019;26(30):30967–79. CASGoogle Scholar
  69. Nishioka S. Traffic pollution: control policy and research trend. Transp Res Part A. 1989;23(1):73–81. Google Scholar
  70. Botta E, Yamasaki S. “Policies, regulatory framework and enforcement for air quality management: The case of Japan”. 2020; OECD Environment Working Papers, No. 156, OECD Publishing, Paris, https://doi.org/10.1787/b2de0bc1-en.
  71. Rutherford D, Ortolano L. Air quality impacts of Tokyo’s on-road diesel emission regulations. Transp Res Part D: Transp Environ. 2008;13(4):239–54. Google Scholar
  72. Asadollah-Fardi G. Air quality management in Tehran. Kitakyushu Initiative Seminar on Urban Air Quality Management, Bangkok, Thailand, February. Accessed on the internet. 2008. https://www.unescap.org/esd/environment/kitakyushu/urban_air/city_report/Tehran.pdf.
  73. Hirota K. Comparative studies on vehicle related policies for air pollution reduction in ten Asian countries. Sustainability. 2010;2(1):145–62. CASGoogle Scholar
  74. Irving P, Moncrieff I. New Zealand traffic and local air quality. Sci Total Environ. 2004;334:299–306. Google Scholar
  75. Johnston FH, Hanigan IC, Henderson SB, Morgan GG. Evaluation of interventions to reduce air pollution from biomass smoke on mortality in Launceston, Australia: retrospective analysis of daily mortality, 1994–2007. BMJ. 2013. https://doi.org/10.1136/bmj.e8446. ArticleGoogle Scholar
  76. Lareau TJ. Alternate stationary source air pollution control policies: a welfare analysis. Public Finance Rev. 1981;9(3):281–307. Google Scholar
  77. Judd BR. Decision analysis of auto emission control. Socioecon Plann Sci. 1977;11(3):123–30. Google Scholar
  78. Norco JE, Cohen AS. Modeling emission control strategies: the ‘London Law’ in Chicago. VDI VERLAG-GMBH. 1973:D38-D40.
  79. Mandelker DR, Taub F. Constitutional limitations on emission quotas as an air pollution control strategy. Ecol Law Q. 1979;8(2):269–302. Google Scholar
  80. Guldmann JM. Modeling the location of greenbelts as a means for air quality control. Socioecon Plann Sci. 1983;17(4):217–24. Google Scholar
  81. Fraas A, McGartland A. Alternative fuels for pollution control: an empirical evaluation of benefits and costs. Contemp Econ Policy. 1990;8(1):62–74. Google Scholar
  82. Scott FA Jr, Berger MC, Blomquist GC. Impacts of air pollution control strategies in Kentucky. Growth Chang. 1988;19(2):40–55. Google Scholar
  83. Gaut NE, Gladden LW, Newman E. Dynamic emission controls: a cost effective strategy for air quality control. ISA Trans. 1974;13(4):277–90. CASGoogle Scholar
  84. Lloyd AC, Lents JM, Green C, Nemeth P. Air quality management in Los Angeles: perspectives on past and future emission control strategies. J Air Pollut Control Assoc. 1989;39(5):696–703. CASGoogle Scholar
  85. Lloyd AC. California clean air initiatives—the role of fuel cells. J Power Sour. 1992;37(1–2):241–53. CASGoogle Scholar
  86. Bruhl RJ, Linder SH, Sexton K. Case study of municipal air pollution policies: Houston’s air toxic control strategy under the white administration, 2004–2009. Environ Sci Technol. 2013;47(9):4022–8. CASGoogle Scholar
  87. Collins CO, Scott SL. Air pollution in the Valley of Mexico. Geogr Rev. 1993;83(2):119–33. Google Scholar
  88. Davis LW. The effect of driving restrictions on air quality in Mexico City. J Polit Econ. 2008;116(1):38–81. Google Scholar
  89. Streit GE, Guzman F. Mexico City air quality: progress of an international collaborative project to define air quality management options. Atmos Environ. 1996;30(5):723–33. CASGoogle Scholar
  90. Carvalho VSB, Freitas ED, Martins LD, Martins JA, Mazzoli CR, Andrade MDF. Air quality status and trends over the Metropolitan Area of São Paulo, Brazil as a result of emission control policies. Environ Sci Policy. 2015;47:68–79. CASGoogle Scholar
  91. Dente B, Lewanski R. Administrative networks and implementation effectiveness—industrial air-pollution control policy in Italy. Policy Stud J. 1982;11(1):116–29. Google Scholar
  92. Cesaroni G, Boogaard H, Jonkers S, Porta D, Badaloni C, Cattani G, et al. Health benefits of traffic-related air pollution reduction in different socioeconomic groups: the effect of low-emission zoning in Rome. Occup Environ Med. 2012;69(2):133–9. CASGoogle Scholar
  93. Weber E. Air pollution control strategy in the Federal Republic of Germany. J Air Pollut Control Assoc. 1981;31(1):24–30. Google Scholar
  94. Beck P. Air pollution control policy in the Federal Republic of Germany as a strategy for dealing with environmental risks. Environ Int. 1984;10(5–6):463–73. Google Scholar
  95. Jiang W, Boltze M, Groer S, Scheuvens D. Impacts of low emission zones in Germany on air pollution levels. Transp Res Procedia. 2017;25:3370–82. Google Scholar
  96. Qadir R, Abbaszade G, Schnelle-Kreis J, Chow J, Zimmermann R. Concentrations and source contributions of particulate organic matter before and after implementation of a low emission zone in Munich, Germany. Environ Pollut. 2013;175:158–67. CASGoogle Scholar
  97. Hutchinson EJ, Pearson PJ. An evaluation of the environmental and health effects of vehicle exhaust catalysts in the UK. Environ Health Perspect. 2004;112(2):132–41. CASGoogle Scholar
  98. Carnell E, Vieno M, Vardoulakis S, Beck R, Heaviside C, Tomlinson S, et al. Modelling public health improvements as a result of air pollution control policies in the UK over four decades—1970 to 2010. Environ Res Lett. 2019;14(7):074001. CASGoogle Scholar
  99. Ellison RB, Greaves SP, Hensher DA. Five years of London’s low emission zone: effects on vehicle fleet composition and air quality. Transp Res Part D: Transp Environ. 2013;23:25–33. Google Scholar
  100. Burr ML, Karani G, Davies B, Holmes B, Williams K. Effects on respiratory health of a reduction in air pollution from vehicle exhaust emissions. Occup Environ Med. 2004;61(3):212–8. CASGoogle Scholar
  101. Panteliadis P, Strak M, Hoek G, Weijers E, van der Zee S, Dijkema M. Implementation of a low emission zone and evaluation of effects on air quality by long-term monitoring. Atmos Environ. 2014;86:113–9. CASGoogle Scholar
  102. Plinke E, Atak M, Haasis HD, Rentz O. Emission control strategies for turkey in view of an integration into the European community. Int J Energy Res. 1992;16(3):223–39. CASGoogle Scholar
  103. Atimtay AT, Incecik S, editors. Air pollution problem in Istanbul, Turkey and strategical efforts in air quality management. Actes du colloque «13th Clean Air Congress», Londres; 2004.
  104. Toman M, Cofała J, Bates R. Alternative standards and instruments for air pollution control in Poland. Environ Resour Econ. 1994;4(5):401–17. Google Scholar
  105. Adamson S, Bates R, Laslett R, Pototschnig A. Energy use, air pollution, and environmental policy in Krakow: Can economic incentives really help? World Bank Technical Paper.1996:11-52.
  106. Aunan K, Pátzay G, Aaheim HA, Seip HM. Health and environmental benefits from air pollution reductions in Hungary. Sci Total Environ. 1998;212(2–3):245–68. CASGoogle Scholar
  107. Clancy L, Goodman P, Sinclair H, Dockery DW. Effect of air-pollution control on death rates in Dublin, Ireland: an intervention study. Lancet. 2002;360(9341):1210–4. Google Scholar
  108. Dockery DW, Rich DQ, Goodman PG, Clancy L, Ohman-Strickland P, George P, et al. Effect of air pollution control on mortality and hospital admissions in Ireland. Res Rep (Health Eff Inst). 2013;176:3–109. CASGoogle Scholar
  109. Stathopoulos A, Argyrakos G. Control strategies for reducing environmental pollution from road traffic. Sci Total Environ. 1993;134(1–3):315–24. CASGoogle Scholar
  110. Mavrotas G, Ziomas IC, Diakouaki D. A combined MOIP–MCDA approach to building and screening atmospheric pollution control strategies in urban regions. Environ Manag. 2006;38(1):149–60. Google Scholar
  111. Naiker Y, Diab R, Zunckel M, Hayes ET. Introduction of local air quality management in South Africa: overview and challenges. Environ Sci Policy. 2012;17:62–71. Google Scholar
  112. Chávez CA, Stranlund JK, Gómez W. Controlling urban air pollution caused by households: uncertainty, prices, and income. J Environ Manag. 2011;92(10):2746–53. Google Scholar
  113. Gramsch E, Le Nir G, Araya M, Rubio MA, Moreno F, Oyola P. Influence of large changes in public transportation (Transantiago) on the black carbon pollution near streets. Atmos Environ. 2013;65:153–63. CASGoogle Scholar
  114. Ghorani-Azam A, Riahi-Zanjani B, Balali-Mood M. Effects of air pollution on human health and practical measures for prevention in Iran. J Res Med Sci. 2016. https://doi.org/10.4103/1735-1995.189646. ArticleGoogle Scholar
  115. Zhang XG, Fung JCH, Zhang YM, Lau AKH, Leung KKM, Huang W. Assessing PM25 emissions in 2020: the impacts of integrated emission control policies in China. Environ Pollut. 2020;263:114575. CASGoogle Scholar
  116. Fekete H, Kuramochi T, Roelfsema M, den Elzen M, Forsell N, Höhne N, et al. A review of successful climate change mitigation policies in major emitting economies and the potential of global replication. Renew Sustain Energy Rev. 2021;137:110602. Google Scholar
  117. Lozano A, Granados F, Guzmán A. Impacts of modifications on urban road infrastructure and traffic management: a case study. Procedia Soc Behav Sci. 2014;162:368–77. Google Scholar
  118. Rojas-Rueda D, de Nazelle A, Teixidó O, Nieuwenhuijsen MJ. Replacing car trips by increasing bike and public transport in the greater Barcelona metropolitan area: a health impact assessment study. Environ Int. 2012;49:100–9. CASGoogle Scholar
  119. Hesketh R, Jones L, Hinrichs-Krapels S, Kirk A, Johnson S. Air quality improvement initiatives in other cities. 2017. https://www.kcl.ac.uk/sspp/policy-institute/%20publications/air-quality-improvement-initiatives-in-other-cities.pdf.
  120. Jiang Y, Zhou X, Xu Q. Scenario analysis-based decision and coordination in supply chain management with production and transportation scheduling. Symmetry. 2019;11(2):160. Google Scholar
  121. Ko A, Woo Y, Jang J, Jung Y, Pyo Y, Jo H, et al. Complementary effects between NO oxidation of DPF and NO2 decomposition of SCR in light-duty diesel engine. J Ind Eng Chem. 2019;80:160–70. CASGoogle Scholar
  122. García-Contreras R, Soriano JA, Fernández-Yáñez P, Sánchez-Rodríguez L, Mata C, Gómez A, et al. Impact of regulated pollutant emissions of euro 6d-temp light-duty diesel vehicles under real driving conditions. J Clean Prod. 2021;286:124927. Google Scholar
  123. Hao J, Fu L, He K, Wu Y. Urban vehicular pollution control. Beijing: China Environmental Science Press; 2001. Google Scholar
  124. Hao J, Hu J, Fu L. Controlling vehicular emissions in Beijing during the last decade. Transp Res Part A: Policy Pract. 2006;40(8):639–51. Google Scholar
  125. Liu H, He K, He D, Fu L, Zhou Y, Walsh MP, et al. Analysis of the impacts of fuel sulfur on vehicle emissions in China. Fuel. 2008;87(13–14):3147–54. CASGoogle Scholar
  126. Hawkins TR, Gausen OM, Strømman AH. Environmental impacts of hybrid and electric vehicles—a review. Int J Life Cycle Assess. 2012;17(8):997–1014. CASGoogle Scholar
  127. Holman C, Harrison R, Querol X. Review of the efficacy of low emission zones to improve urban air quality in European cities. Atmos Environ. 2015;111:161–9. CASGoogle Scholar
  128. Cyrys J, Peters A, Wichmann H-E. Umweltzone München-Eine erste Bilanz. Umweltmedizin in Forschung und Praxis. 2009;14(3):127–32. Google Scholar
  129. Jones AM, Harrison RM, Barratt B, Fuller G. A large reduction in airborne particle number concentrations at the time of the introduction of “sulphur free” diesel and the London low emission zone. Atmos Environ. 2012;50:129–38. CASGoogle Scholar
  130. Santos G, Behrendt H, Teytelboym A. Part II: policy instruments for sustainable road transport. Res Transp Econ. 2010;28(1):46–91. Google Scholar
  131. Greene W, BJ T. Institutional and regulatory approaches to control residential wood burning emissions. Proc. Conf. Wood Combust. Environ. Assess. 162-174, EPA 600/9-81-029 (U.S. Environmental Protection Agency, Washington D.C., 1981).
  132. Zhao B, Wang S, Wang J, Fu JS, Liu T, Xu J, et al. Impact of national NOx and SO2 control policies on particulate matter pollution in China. Atmos Environ. 2013;77:453–63. CASGoogle Scholar
  133. Daneshpajooh N, Arhami M, Azoji H. PM dispersion during stable winter episodes in Tehran and effect of governmental emission regulations. Atmos Pollut Res. 2020;11(8):1316–28. CASGoogle Scholar
  134. Mediavilla-Sahagun A, ApSimon HM. Urban scale integrated assessment for London: which emission reduction strategies are more effective in attaining prescribed PM10 air quality standards by 2005? Environ Model Softw. 2006;21(4):501–13. Google Scholar
  135. Ding AJ, Huang X, Nie W, Chi XG, Xu Z, Zheng LF, et al. Significant reduction of PM2.5 in eastern China due to regional-scale emission control: evidence from SORPES in 2011–2018. Atmos Chem Phys. 2019;19(18):11791–801. CASGoogle Scholar
  136. Gao M, Liu Z, Zheng B, Ji D, Sherman P, Song S, et al. China’s emission control strategies have suppressed unfavorable influences of climate on wintertime PM 2.5 concentrations in Beijing since 2002. Atmos Chem Phys. 2020;20(3):1497–505. CASGoogle Scholar
  137. Albuquerque TTD, West J, Andrade MD, Ynoue RY, Andreao WL, dos Santos FS, et al. Analysis of PM2.5 concentrations under pollutant emission control strategies in the metropolitan area of Sao Paulo, Brazil. Environ Sci Pollut Res. 2019;26(32):33216–27. Google Scholar
  138. Kumar P, Gulia S, Harrison RM, Khare M. The influence of odd–even car trial on fine and coarse particles in Delhi. Environ Pollut. 2017;225:20–30. CASGoogle Scholar
  139. Xu H, Ho SSH, Cao J, Guinot B, Kan H, Shen Z, et al. A 10-year observation of PM 2.5-bound nickel in Xi’an, China: effects of source control on its trend and associated health risks. Sci Rep. 2017. https://doi.org/10.1038/srep41132. ArticleGoogle Scholar
  140. Raufer RK. Particulate and lead air pollution control in Cairo: benefits valuation and cost-effective control strategies. Nat Res Forum. 1997;21(3):209–19. Google Scholar
  141. Cyrys J, Peters A, Soentgen J, Wichmann H-E. Low emission zones reduce PM10 mass concentrations and diesel soot in German cities. J Air Waste Manag Assoc. 2014;64(4):481–7. CASGoogle Scholar
  142. Trnka D. Policies, regulatory framework and enforcement for air quality management: the case of Korea. OECD: Paris, France, 2020; Available online: https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV/WKP(2020)5&docLanguage=En.
  143. Kleeman MJ, Cass GR. Effect of emissions control strategies on the size and composition distribution of urban particulate air pollution. Environ Sci Technol. 1999;33(1):177–89. CASGoogle Scholar
  144. Kanada M, Fujita T, Fujii M, Ohnishi S. The long-term impacts of air pollution control policy: historical links between municipal actions and industrial energy efficiency in Kawasaki City, Japan. J Clean Prod. 2013;58:92–101. CASGoogle Scholar
  145. Ikeda Y, Yasuda R, Nakaminami H, Tanaka M, Lee C, Higashino H. A mixed-integer optimization technique for developing a sulfur emission control strategy for China. Water Air Soil Pollut. 2001;130(1–4):265–70. Google Scholar
  146. Xu Y, Masui T. Local air pollutant emission reduction and ancillary carbon benefits of SO2 control policies: application of AIM/CGE model to China. Eur J Oper Res. 2009;198(1):315–25. Google Scholar
  147. Wang XM, Liu H, Pang JM, Carmichael G, He KB, Fan Q, et al. Reductions in sulfur pollution in the Pearl River Delta region, China: assessing the effectiveness of emission controls. Atmos Environ. 2013;76:113–24. CASGoogle Scholar
  148. MacDonald BI. Alternative strategies for control of sulfur dioxide emissions. J Air Pollut Control Assoc. 1975;25(5):525–8. Google Scholar
  149. Ruane MF, Gruhl J, Schweppe FC. Supplementary control systems—a demonstration. IEEE Trans Power Appar Syst. 1976;95(1):309–17. Google Scholar
  150. Shao M, Zhang Y, Raufer R. Control strategies for vehicular NOx emissions in Guangzhou, China. Nat Resour Forum. 2001;25(2):157–66. Google Scholar
  151. Shon Z-H, Kim K-H. Impact of emission control strategy on NO2 in urban areas of Korea. Atmos Environ. 2011;45(3):808–12. CASGoogle Scholar
  152. Cui L, Li HW, Huang Y, Zhang Z, Lee SC, Blake DR, et al. The characteristics and sources of roadside VOCs in Hong Kong: effect of the LPG catalytic converter replacement programme. Sci Total Environ. 2021. https://doi.org/10.1016/j.scitotenv.2020.143811. ArticleGoogle Scholar
  153. Shin HJ, Kim JC, Lee SJ, Kim YP. Evaluation of the optimum volatile organic compounds control strategy considering the formation of ozone and secondary organic aerosol in Seoul. Korea Environ Sci Pollut Res. 2013;20(3):1468–81. CASGoogle Scholar
  154. Fujita EM, Campbell DE, Stockwell WR, Lawson DR. Past and future ozone trends in California’s South Coast Air Basin: reconciliation of ambient measurements with past and projected emission inventories. J Air Waste Manag Assoc. 2013;63(1):54–69. CASGoogle Scholar
  155. Streets D, Chang Y-S, Tompkins M, Ghim Y, Carter L. Efficient regional ozone control strategies for the eastern United States. J Environ Manag. 2001;61(4):345–65. CASGoogle Scholar
  156. Pratapas JM, Calcagni J. Ozone control strategies in the United States. Environ Int. 1983;9(6):529–38. Google Scholar
  157. Heninger BT, Shah FA. Control of stationary and mobile source air pollution: reducing emissions of hydrocarbons for ozone abatement in Connecticut. Land Econ. 1998;74(4):497–513. Google Scholar
  158. Cohan DS, Tian D, Hu YT, Russell AG. Control strategy optimization for attainment and exposure mitigation: case study for ozone in Macon, Georgia. Environ Manag. 2006;38(3):451–62. Google Scholar
  159. Yu X, Yuan ZB, Fung JCH, Xue J, Li Y, Zheng JY, et al. Ozone changes in response to the heavy-duty diesel truck control in the Pearl River Delta. Atmos Environ. 2014;88:269–74. CASGoogle Scholar
  160. Castell N, Mantilla E, Stein AF, Salvador R, Millan M. Simulation and evaluation of control strategies for ozone reduction in a complex terrain in Southwestern Spain. Environ Model Assess. 2011;16(6):565–76. Google Scholar
  161. Tong P, Zhang Q, Lin H, Jian X, Wang X. Simulation of the impact of the emergency control measures on the reduction of air pollutants: a case study of APEC blue. Environ Monit Assess. 2020. https://doi.org/10.1007/s10661-019-8056-1. ArticleGoogle Scholar
  162. Haagen Smit AJ. Abatement strategy for photochemical smog. Adv Chem Ser. 1972;113:169–90. CASGoogle Scholar
  163. Katsouyanni K, Touloumi G, Spix C, Schwartz J, Balducci F, Medina S, et al. Short term effects of ambient sulphur dioxide and particulate matter on mortality in 12 European cities: results from time series data from the APHEA project. BMJ. 1997;314(7095):1658. CASGoogle Scholar
  164. Wang X, Bi X, Sheng G, Fu J. Chemical composition and sources of PM10 and PM2.5 aerosols in Guangzhou, China. Environ Monit Assess. 2006;119(1):425–39. CASGoogle Scholar
  165. Behera SN, Sharma M, Nayak P, Shukla SP, Gargava P. An approach for evaluation of proposed air pollution control strategy to reduce levels of nitrogen oxides in an urban environment. J Environ Plann Manag. 2014;57(4):467–94. Google Scholar
  166. Lal S, Patil R. Monitoring of atmospheric behaviour of NOx from vehicular traffic. Environ Monit Assess. 2001;68(1):37–50. CASGoogle Scholar
  167. van Aardenne JA, Carmichael GR, Levy H II, Streets D, Hordijk L. Anthropogenic NOx emissions in Asia in the period 1990–2020. Atmos Environ. 1999;33(4):633–46. Google Scholar
  168. Krishnamurthy A, Adebayo B, Gelles T, Rownaghi A, Rezaei F. Abatement of gaseous volatile organic compounds: a process perspective. Catal Today. 2020;350:100–19. CASGoogle Scholar
  169. Kleinman L, Lee YN, Springston SR, Nunnermacker L, Zhou X, Brown R, et al. Ozone formation at a rural site in the southeastern United States. J Geophys Res: Atmos. 1994;99(D2):3469–82. CASGoogle Scholar
  170. Liu S, Trainer M, Fehsenfeld F, Parrish D, Williams E, Fahey DW, et al. Ozone production in the rural troposphere and the implications for regional and global ozone distributions. J Geophys Res: Atmos. 1987;92(D4):4191–207. CASGoogle Scholar
  171. Sillman S. The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Dev Environ Sci. 2002;1:339–85. Google Scholar
  172. Raifman M, Lambert KF, Levy JI, Kinney PL. Mortality implications of increased active mobility for a proposed regional transportation emission cap-and-invest program. J Urban Health. 2021. https://doi.org/10.1289/isee.2021.O-SY-064. ArticleGoogle Scholar

Acknowledgements

The authors thank the Research Center for Environmental Health Technology, Iran University of Medical Sciences for the provision of financial support [Grant No.99-3-61-19814]. (Ethics Code: IR.IUMS.REC.1399.1364).